Holoeye空间光调制器 | ALPAO高速变形镜 | 波前分析仪Phasics | 自适应光学系统 | 数字微反射镜 DMD 数字微镜器件 | 光学元件器件DOE | 光刻仪 |
飞秒激光器 | 皮秒激光器 | 自相关仪 | 超短脉冲测量仪Frog | 超快激光器件 |
高功率连续波OPO | 高功率光纤激光器 | Qioptiq NANO 激光器 | 低噪声窄线宽激光器 | 可调谐激光器 | 半导体激光器和放大器 | SLD和ASE宽带光源 | 双波长输出氦氖激光器 |
QIOPTIQ光纤耦合半导体激光器 | Diode & DPSS_qioptiq | 激光驱动白光光源 | 等离子体宽带光源 | 单色仪 | 光谱仪 | 光栅 | 辐射计 | 防嗮系数分析 | Optogma固体激光器 | Solarlight | 波长选择器 |
激光准直仪 | 红外激光观察镜 | 激光功率能量计 | 光学斩波器 | 光束质量分析仪 | 位敏探测器 | 红外相机 | O/E转换模块探测器 TIA-525S |
太赫兹相机及源 | 太赫兹探测器 | 太赫兹元器件及晶体 | 太赫兹光谱仪 | 太赫兹功率计 |
Optiphase | 微光MOI |
普克尔盒/Pockels Cells | 电光调制器/Electro-Optics Modulators | 法拉第隔离器/Faraday Isolators | SESAM半导体可饱和吸收镜 | 探测器 | EOT高速光电探测器 | 其他未分类 |
电化学ECV 扩散浓度 | 接触电阻测量仪 | 四点探针测试仪 | 少子寿命测试仪 |
平行光管 |
光纤跳线及配件 | 无源器件 |
太赫兹技术简介
太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对于物质结构的探索具有重要意义;其次是因为太赫兹脉冲光源与传统光源相比具有很多独特的性质。
太赫兹(THz)辐射介于微波和红外之间,与微波、X射线、核磁共振(NMR)成像相比,太赫兹成像不仅能给出物体的密度信息,而且能给出频率域的信息,以及在光频、微波和X射线范围内所不能给出的材料的转动、振动信息.太赫兹射线与其他频段的电磁波相比,它能量低,不会造成对生物样品的电离损伤,而且太赫兹射线很容易穿过介电材料,因而可以用于产品的安全监测.因此太赫兹成像技术在生物学、工业安全监测等方面有可能带来新的关键性的突破。
红外、毫米波与太赫兹都是电磁波谱的一部分。红外波长范围从0.75至1000微米,频率范围为400至0.3THz;毫米波波长范围为1~100毫米,频率为30~300GHz,即0.03~0.3THz;太赫兹,是指频率在0.1-10THz范围内的电磁波。它在长波段与毫米波重合,而在短波段与红外线重合。
在这三个波段内,电磁波辐射包括相干辐射的产生、传播和接收构成了内容十分丰富,用途特别广泛的研究领域。对于红外、毫米波的研究已经有相当的历史,并且与航空、航天、遥感、遥控、预警、监测等一系列关系国计民生的重大技术应用紧密关联。而由于缺乏有效的产生与检测方法,国际上对太赫兹的研究仅仅只有20多年的历史,人们对该波段电磁辐射性质的了解非常有限,以致于该波段被称为电磁波谱中的太赫兹空隙。
科学家们已经达成共识:太赫兹是一种新的、有很多独特优点的辐射源,同时又是一个重要的交叉前沿领域。虽然目前利用太赫兹开发的产品非常有限,但可以预计的是未来各国将会投入庞大资源去开发太赫兹技术。
太赫兹技术的美好前景
太赫兹的应用前景广阔,将对多个领域带来革命性变化。目前,已经投入实验性使用的是代替X光安全检测。据中科院上海技术物理研究所陆卫研究员介绍,相对于红外而言,太赫兹的波长更长,对物体的渗透性也更强。2003年美国哥伦比亚号航天飞机失事后,科学家从美国航天局提供的一块材料着手,利用太赫兹作了检测。材料里有90多个缺陷是对安全有害的,他们检测出了其中的大部分,漏检率只有百分之几,超过了其他检测方法。在美国的一些机场已经使用了太赫兹安全检测,不仅仅是从形态上,更是从化学组成上准确分辨爆炸物。
同时,可以“看”到太赫兹的射电望远镜也已经在我国使用。沈学础院士说,肉眼只能观察到发射450-750纳米波长可见光的天体,但这类天体只占总数的很小一部分,其他的天体也是在发光发热,但却是肉眼看不到的红外、太赫兹和毫米波。宽波段的射电望远镜则能帮助科学家们观测到这些不可见光,从而了解更多天体信息。
太赫兹另一个可能的用处是参与国际核聚变反应堆计划。沈学础院士告诉记者,从单个光子看,太赫兹的能量低,只有可见光的数百分之一。但一旦将太赫兹聚集起来,形成一个高能集束,由此放射出的一个脉冲能量可达几百兆瓦,可以为核聚变反应堆加热。建造一个高效、稳定、大功率的太赫兹发生器是科学家们研究重点之一。
1. 特征
基于半导体的太赫兹发射源和探测器
光谱范围0.1-3 THz
亚皮秒的时间分辨率
用电脑控制并完成数据分析
2. 介绍
太赫兹和亚太赫兹的频段(100GHz-10THz)正好填补现有物理学电磁波谱中毫米波和红外线波段之间的这一段空白。被科学界戏称为太赫兹“空隙”的这段光谱是非常有吸引力的,因为已经发现许多潜在的应用,除了我们下面将提到的三大主流研究方向外,在特殊物体成像、生物检测以及先进通信系统等方面同样具有十分广阔的应用前景。
3. 太赫兹时域光谱分析(THz—TDS)
典型的THz时域光谱学系统如图1。用亚皮秒的太赫兹脉冲透过样品,再经一段对称的自由空间后由探测器接收,测量由此产生的电磁场强度随时间的变化(利用傅立叶变换获得频域上幅度和相位的变化量),进而得到样品的信息。这样的测量方法已经成功地用于气体和有机材料的测量。
我们知道,太赫兹(THz)光具有一些独特的性质。大部分材料及活体组织对于THz光来说都是半透明的并具备带有其特征的“指纹谱”。此外,由于THz光谱还具有非离子化和辐射能量相对较低等特点,因而它又作为一种非常安全的检测技术方法而越来越受到重视。
4. 太赫兹成像(THz Imaging)
太赫兹射线能够深入到许多有机材料内部而不伤害材料,这个类似于X射线的特长使太赫兹成像非常适合用来测量生物样品。通过聚焦后的太赫兹光束来对样品进行光栅扫描,这套工具包就能轻易的实现太赫兹成像。
5. 太赫兹泵浦探针试验(Pump-Probe THz Experiments)
而飞秒激光器的引入为研究超快过程的非平衡动态力学提供了手段。在采用光泵浦探针技术的试验中,样品一面被超短的强激光脉冲照射,激发出自由电信号,同时一束相对较弱的泵浦信号光从另一面射入,这束THz波改变了样品的光学性质。与纯粹的光学探针技术恰恰相反——研究发现THz泵浦脉冲在半导体的级带上是非共振的,这就避免了自由电子动力学领域试验中许多人工的假象干扰,可以放心地直接作为探针应用于光泵浦-光学探针系统。
6. THz光谱应用组件
标准的成套工具包由:含光电导天线的THz发射和接收器、引导泵浦光路的光学组件、电机延迟线、给THz光路定向的光学镜片、样品台、带控制器的斩波器和锁相放大器多部分组成。配置简单灵活可应需更改,比如,把样品台安装在X-Y电动调整架上即转换成成像实验用的装置了。
7.THz 应用相关元件
太赫兹发射器,太赫兹探测器,光学元器件
THz发射和接收器均集成了低温环境下生长的GaAs晶体材料光电导天线(含微波传输带)和一些THz透镜,分别安置在两个X-Y调整架当中。电子迁移率和诱捕时间这两个技术指标分别决定了光电导天线在发射器和接收器上的表现。低温环境生长的GaAs(LTG-GaAs)是较适于太赫兹应用的材料之一,因为它有极高的电子迁移率、较快的电信号捕获时间、很高的击穿电压以及高抗性。另外,我们在低温环境生长GaAs的过程中采用了一种特别的技术,使得光电激发寿命获得了一个远宽于正常的可控波谱范围:从低于100fs 一直到100ps!除了光电导天线的几何设计,像THz透镜组的参数的准确选择和低温GaAs晶体外延法生长过程选择哪类材料的附着层,这些都是非常关键的因素。我们希望在保留较佳的带宽情况下,通过优化还能输出较高能量的THz辐射。所克服的技术难点也正是这套工具包的价值所在。
就拿THz透镜来说,这套THz发射和探测级所选配的透镜,用了许多不同材料来满足如此宽范围的波长的辐射,一般来说,像绝缘材料和硅质都是比较常用的。镀金的反射镜则是保证THz“光束”准直和聚焦的重要元件。
中国工程物理研究院
北京计量院
北京无线电计量测试研究所
中国科学院半导体研究所
清华大学
北京大学
中科院上海微系统与信息技术研究所
中国科学院上海光学精密机械研究所
上海技术物理所
西南科技大学
四川大学
成都光电所
深圳大学
长春理工大学
上海理工大学
浙江大学
南开大学
北京交通大学
中国科学技术大学
深圳先进技术研究院
东南大学太赫兹研究所
山东科技大学
厦门大学
太赫兹电光探测器太赫兹光电探测器(EOD)用于记录脉冲太赫兹(THz)辐射。它由集成光学器件以及内置锁定放大器组成。该探测器具有以下功能:信号调节;光电探测器的自动信号平衡微调。可以通过EOD随附的专有软件进行机械延迟电路控制的功能。该设备的应用领域包括时域光谱(TDS)。 |
高莱探测器高莱探测器是最有效的太赫兹探测设备之一,是一种经典的非致冷、非选择性探测器。这种探测器可以在室温工作,在室温下具有极好的灵敏度,在很宽的波长范围内具有很平坦的光学响应,并且具有体积小、高灵敏度、高效率与宽光谱范围等优点,广泛地应用在IR & THz辐射源和探测器的研究中。 |
太赫兹分束镜单次分束镜:用于发射光仅通过分束片一次的光学系统 多次分束镜:用于迈克尔逊干涉仪的光路,波束多次通过分束片 材料:HRZF-Si,KBr 直径:38.1~101.mm,方形可选 厚度: 3.5~10mm,可定制 |
THz低通滤波器THz Low Pass Filters-工作方式: -1000-20um(0.3-15 THz)范围带通; -可选中心波段0.3、0.5、1.0、3.0和10.0THz-材料:带不同小孔的金属薄片-带通波段高透过率:60%-90%-阻隔波段低透过率:4%-可集成于电光组件和在低温环境使用-高破坏阈值:65-100W/cm2-标配带Holder-尺寸: 截面:D=24/35/47mm,其他尺寸也可定制 |
太赫兹波片由双折射材料制成的平面平板用于改变辐射的偏振态。波片通过在波的两个垂直极化分量之间移动相位来工作。最常见的波片类型是半波片(λ/ 2片)和四分之一波片(λ/ 4片)。λ/ 2板给出相位延迟π,而λ/ 4板给出π/ 2。半波片改变线性偏振光的偏振方向。四分之一波片将线性偏振光改变为圆形,反之亦然。如果偏振方向沿波片轴之一,则波片不会改变线性偏振光束的偏振 |
太赫兹偏振片超宽波长范围内应用:MIR((7μm )至THz波段(3mm以上),HDPE高密度聚乙烯基底,远红外波段透射率高,高偏振度 |
THz电光取样探测系统太赫兹光电探测器(electro-optic detector :EOD)被专门设计用来探测脉冲THz辐射。探测器内置一个锁相放大器,具有积分采集数据的能力。此探测器主要功能有:信号调节;自动微调光电探测器使其平衡;内部的机械延迟回路会将调节信号结果显示在电脑上,实时可见。 |
太赫兹可调偏振转换器单色波片用于转换固定波长辐射的偏振,因为这些波片仅在单个波长下工作。在某些情况下,例如与可调谐激光器一起使用时,可能会带来不便,太赫兹可调偏振转换器(TWPC)是一个很好的解决办法。 |
TPX楔形窗片W(orWW)-TPX-D<diameter, mm>-T<thickness, mm> W-TPX-D25.4-T2 WW-TPX-D25.4-T2 |
太赫兹法布里珀罗干涉仪太赫兹法布里珀罗干涉仪,其反射面之间的距离是固定的,该反射面由高电阻率浮区硅的平面平板制成。与标准的平-平窗相比,标准具的平整度和平行度更好。标准具厚度的测量高度精确。 |
THz电光取样探测系统太赫兹光电探测器(electro-optic detector :EOD)被专门设计用来探测脉冲THz辐射。探测器内置一个锁相放大器,具有积分采集数据的能力。此探测器主要功能有:信号调节;自动微调光电探测器使其平衡;内部的机械延迟回路会将调节信号结果显示在电脑上,实时可见。 |
THz金膜全反镜THz Mirrors:Typical reflection curve is shown below. Measurements were made up to 1000 μm. However operating wavelength range is much wider. |
太赫兹衰减器可变轮衰减器由5个轮组成。四个轮子装有衰减程度不同的金属化楔形硅晶片,一个轮子是空的。如有必要,可以用自定义元素(例如过滤器)填充空轮。四个衰减器的透射率分别为30%,10%,3%和1%。这些衰减器元件可以用作单个衰减器,也可以组合使用以实现不同级别的衰减。 |
太赫兹低通滤波片波长范围从IR到mm 通带波段透射率高,截止波段透射率低(<0.1%) 带安装环 |
太赫兹棱镜传统 (直角)棱镜 全反射衰减(ATR)棱镜:这种特殊的棱镜可研究透射中难以分析的材料。 材料:HRFZ-Si |
太赫兹全反射镜Tydex公司专业订制生产THz光学镜片,可以提供太赫兹专用离轴抛物镜、滤波片、偏振片、窗片、透镜、棱镜、波片、分束片、反射镜和菲涅尔透镜等,同时还提供太赫兹衰减器、太赫兹宽带相位变换器。 |
太赫兹窗片材料: HRFZ-Si(高阻硅) crystal quartz(太赫兹级石英晶体) sapphire(太赫兹级蓝宝石) TPX (聚4-甲基戊烯) HDPE(高密度聚乙烯) 尺寸:25-100mm; 厚度:1.0-4.0mm |
太赫兹径向偏振片可实现将水平偏振光调节至径向偏振 |
太赫兹透镜材料:TPX(平凸、双凸) 和HRFZ-Si (球面、超半球、半球、HYPO半球形、子弹形和月牙形) 直径:2-110mm; 厚度:0.6~27mm; 焦距:5-700mm |
太赫兹带通滤波片通带范围:0.1至15THz (3000到20μm) 通带波段透射率高:60-90%;截止波段透射率低:< 4% 损伤阈值(0.1至15THz):65-100W/cm2 ; 带安装环 |