产品分类

浏览过的商品

太赫兹技术简介

  太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。它之所以能够引起人们广泛的关注、有如此之多的应用,首先是因为物质的太赫兹光谱(包括透射谱和反射谱)包含着非常丰富的物理和化学信息,所以研究物质在该波段的光谱对于物质结构的探索具有重要意义;其次是因为太赫兹脉冲光源与传统光源相比具有很多独特的性质。

  太赫兹(THz)辐射介于微波和红外之间,与微波、X射线、核磁共振(NMR)成像相比,太赫兹成像不仅能给出物体的密度信息,而且能给出频率域的信息,以及在光频、微波和X射线范围内所不能给出的材料的转动、振动信息.太赫兹射线与其他频段的电磁波相比,它能量低,不会造成对生物样品的电离损伤,而且太赫兹射线很容易穿过介电材料,因而可以用于产品的安全监测.因此太赫兹成像技术在生物学、工业安全监测等方面有可能带来新的关键性的突破。

  红外、毫米波与太赫兹都是电磁波谱的一部分。红外波长范围从0.75至1000微米,频率范围为400至0.3THz;毫米波波长范围为1~100毫米,频率为30~300GHz,即0.03~0.3THz;太赫兹,是指频率在0.1-10THz范围内的电磁波。它在长波段与毫米波重合,而在短波段与红外线重合。

  在这三个波段内,电磁波辐射包括相干辐射的产生、传播和接收构成了内容十分丰富,用途特别广泛的研究领域。对于红外、毫米波的研究已经有相当的历史,并且与航空、航天、遥感、遥控、预警、监测等一系列关系国计民生的重大技术应用紧密关联。而由于缺乏有效的产生与检测方法,国际上对太赫兹的研究仅仅只有20多年的历史,人们对该波段电磁辐射性质的了解非常有限,以致于该波段被称为电磁波谱中的太赫兹空隙。

  科学家们已经达成共识:太赫兹是一种新的、有很多独特优点的辐射源,同时又是一个重要的交叉前沿领域。虽然目前利用太赫兹开发的产品非常有限,但可以预计的是未来各国将会投入庞大资源去开发太赫兹技术。

太赫兹技术的美好前景

  太赫兹的应用前景广阔,将对多个领域带来革命性变化。目前,已经投入实验性使用的是代替X光安全检测。据中科院上海技术物理研究所陆卫研究员介绍,相对于红外而言,太赫兹的波长更长,对物体的渗透性也更强。2003年美国哥伦比亚号航天飞机失事后,科学家从美国航天局提供的一块材料着手,利用太赫兹作了检测。材料里有90多个缺陷是对安全有害的,他们检测出了其中的大部分,漏检率只有百分之几,超过了其他检测方法。在美国的一些机场已经使用了太赫兹安全检测,不仅仅是从形态上,更是从化学组成上准确分辨爆炸物。

  同时,可以“看”到太赫兹的射电望远镜也已经在我国使用。沈学础院士说,肉眼只能观察到发射450-750纳米波长可见光的天体,但这类天体只占总数的很小一部分,其他的天体也是在发光发热,但却是肉眼看不到的红外、太赫兹和毫米波。宽波段的射电望远镜则能帮助科学家们观测到这些不可见光,从而了解更多天体信息。

  太赫兹另一个可能的用处是参与国际核聚变反应堆计划。沈学础院士告诉记者,从单个光子看,太赫兹的能量低,只有可见光的数百分之一。但一旦将太赫兹聚集起来,形成一个高能集束,由此放射出的一个脉冲能量可达几百兆瓦,可以为核聚变反应堆加热。建造一个高效、稳定、大功率的太赫兹发生器是科学家们研究重点之一。



太赫兹实验系统及其组件介绍


1. 特征
基于半导体的太赫兹发射源和探测器
光谱范围0.1-3 THz
亚皮秒的时间分辨率
用电脑控制并完成数据分析

2. 介绍
太赫兹和亚太赫兹的频段(100GHz-10THz)正好填补现有物理学电磁波谱中毫米波和红外线波段之间的这一段空白。被科学界戏称为太赫兹“空隙”的这段光谱是非常有吸引力的,因为已经发现许多潜在的应用,除了我们下面将提到的三大主流研究方向外,在特殊物体成像、生物检测以及先进通信系统等方面同样具有十分广阔的应用前景。

3. 太赫兹时域光谱分析(THz—TDS)

太赫兹时域光谱装置

典型的THz时域光谱学系统如图1。用亚皮秒的太赫兹脉冲透过样品,再经一段对称的自由空间后由探测器接收,测量由此产生的电磁场强度随时间的变化(利用傅立叶变换获得频域上幅度和相位的变化量),进而得到样品的信息。这样的测量方法已经成功地用于气体和有机材料的测量。

  我们知道,太赫兹(THz)光具有一些独特的性质。大部分材料及活体组织对于THz光来说都是半透明的并具备带有其特征的“指纹谱”。此外,由于THz光谱还具有非离子化和辐射能量相对较低等特点,因而它又作为一种非常安全的检测技术方法而越来越受到重视。

4. 太赫兹成像(THz Imaging)
  太赫兹射线能够深入到许多有机材料内部而不伤害材料,这个类似于X射线的特长使太赫兹成像非常适合用来测量生物样品。通过聚焦后的太赫兹光束来对样品进行光栅扫描,这套工具包就能轻易的实现太赫兹成像。

5. 太赫兹泵浦探针试验(Pump-Probe THz Experiments)
  而飞秒激光器的引入为研究超快过程的非平衡动态力学提供了手段。在采用光泵浦探针技术的试验中,样品一面被超短的强激光脉冲照射,激发出自由电信号,同时一束相对较弱的泵浦信号光从另一面射入,这束THz波改变了样品的光学性质。与纯粹的光学探针技术恰恰相反——研究发现THz泵浦脉冲在半导体的级带上是非共振的,这就避免了自由电子动力学领域试验中许多人工的假象干扰,可以放心地直接作为探针应用于光泵浦-光学探针系统。

6. THz光谱应用组件
  标准的成套工具包由:含光电导天线的THz发射和接收器、引导泵浦光路的光学组件、电机延迟线、给THz光路定向的光学镜片、样品台、带控制器的斩波器和锁相放大器多部分组成。配置简单灵活可应需更改,比如,把样品台安装在X-Y电动调整架上即转换成成像实验用的装置了。

7.THz 应用相关元件

太赫兹发射器,太赫兹探测器,光学元器件

  THz发射和接收器均集成了低温环境下生长的GaAs晶体材料光电导天线(含微波传输带)和一些THz透镜,分别安置在两个X-Y调整架当中。电子迁移率和诱捕时间这两个技术指标分别决定了光电导天线在发射器和接收器上的表现。低温环境生长的GaAs(LTG-GaAs)是较适于太赫兹应用的材料之一,因为它有极高的电子迁移率、较快的电信号捕获时间、很高的击穿电压以及高抗性。另外,我们在低温环境生长GaAs的过程中采用了一种特别的技术,使得光电激发寿命获得了一个远宽于正常的可控波谱范围:从低于100fs 一直到100ps!除了光电导天线的几何设计,像THz透镜组的参数的准确选择和低温GaAs晶体外延法生长过程选择哪类材料的附着层,这些都是非常关键的因素。我们希望在保留较佳的带宽情况下,通过优化还能输出较高能量的THz辐射。所克服的技术难点也正是这套工具包的价值所在。

  就拿THz透镜来说,这套THz发射和探测级所选配的透镜,用了许多不同材料来满足如此宽范围的波长的辐射,一般来说,像绝缘材料和硅质都是比较常用的。镀金的反射镜则是保证THz“光束”准直和聚焦的重要元件。



 

上海瞬渺光电典型客户(太赫兹THZ项目)

中国工程物理研究院

北京计量院

北京无线电计量测试研究所

中国科学院半导体研究所

清华大学

北京大学

中科院上海微系统与信息技术研究所

中国科学院上海光学精密机械研究所

上海技术物理所

西南科技大学

四川大学

成都光电所

深圳大学

长春理工大学

上海理工大学

浙江大学

南开大学

北京交通大学

中国科学技术大学

深圳先进技术研究院

东南大学太赫兹研究所

山东科技大学

厦门大学

  • ... ...
  • 不能一一列举敬请谅解
  • 总共找到25个商品
    1/2 已经是第一页
    价格 销量 人气
    太赫兹面阵探测器  
    太赫兹面阵探测器
    太赫兹面阵探测器 美国TERASENSE公司提供高快速响应太赫兹面阵探测器,分辨率16×16,32×32,64×64可选。探测器采用GaAs单晶片设计,体积紧凑小巧。探测单元响应度偏差小于20%。可方便用于快速的太赫兹光斑检测、无损检测、医学成像诊断等应用中
    THz绝对功率计TK-100  
    THz绝对功率计TK-100
    绝对功率/能量计n1、带宽:30GHz~3THzn2、灵敏度:5uW 以下n3、NEP: 5??/Hz??n4、NEJ:1??n5、窗口有效面积直径大于30mmn6、精度优于10%
    TeraKit-DODS太赫兹时域光谱系统  
    TeraKit-DODS太赫兹时域光谱系统
    TeraKit-DODS提供灵活的实验室级的太赫兹光谱仪系统,它有两种配置:透射型和反射型。基于有机晶体,TeraKit-DODS可以运用于不同的太赫兹频率,系统包括延迟线、太赫兹发生器、太赫兹探测器、光学部件和电子部份。它可以和任何的飞秒激光器联用。
    亚太赫兹波段成像相机  
    亚太赫兹波段成像相机
    相机探测器部分基于GaAs异质结高效的载流子迁移率,利用传统光刻蚀的方法制造。成像传感器制做在一个单独的晶圆上。整个过程确保了等离子体探测器各项参数的稳定性和高的响应度(像素-像素之间的响应度偏离20%之内)。每个独立的探测单元在室温下的响应度高达50KV/W,在10GHz-1THz之间的噪声等效功率为1nW/Hz1/2。探测器的探测机制是基于在二维电子系统中入射太赫兹与等离子体振荡的转化过程。
    THz衰减器  
    THz衰减器
    THz Attenuators:-工作方式:n -适合高功率THz波段探测用的THz衰减;n -由5个旋转插入的转轮组合而成n -其中4个转轮装有衰减比率分别为的30%、10%、3%、1%的衰减片,一个空置的是留给用户自己加的n -可以实现彼此之间的自由组合,实现多种更大比例的衰减比 n-适用波段可涵盖40-1000um
    THz低通滤波器  
    THz低通滤波器
    THz Low Pass Filters-工作方式:n -1000-20um(0.3-15 THz)范围带通;n -可选中心波段0.3、0.5、1.0、3.0和10.0THzn-材料:带不同小孔的金属薄片n-带通波段高透过率:60%-90%n-阻隔波段低透过率:4%n-可集成于电光组件和在低温环境使用n-高破坏阈值:65-100W/cm2n-标配带Holdern-尺寸:n 截面:D=24/35/47mm,其他尺寸也可定制
    TERAPower 太赫兹功率计  
    TERAPower 太赫兹功率计
    TERAPower是一款新型自校准宽频太赫兹功率计,性价比高,性能优越,简单易用。TERAPower作为绝对太赫兹通量功率计,适用于商用CW和脉冲太赫兹源,灵敏度高可探测面积大。它能完美地表征太赫兹和亚太赫兹源,例如电子二极管(Gunn, IMPATT, TUNNETT)、BWO返波管、量子级联激光器、分子激光器和自由电子激光器。
    TPX楔形窗片  
    TPX楔形窗片

    W(orWW)-TPX-D<diameter, mm>-T<thickness, mm>

    W-TPX-D50.8-T3.5 

     WW-TPX-D50.8-T3.5 

    太赫兹低噪声飞秒激光器  
    太赫兹低噪声飞秒激光器
    瑞士Onefive公司是由来自多个专业领域的激光物理学家和电子工程师所组成的国际研发团队。这使得我们能够将正确的技术用于正确的领域。根据您的需求,我们提出简单、高性价比的产品及解决方案。Onefive公司的产品源自瑞士,拥有高质量的标准和生产过程。Onefive公司机构精简,而且在各阶段严格遵循严格的财务计划,这使我们能够以有竞争力的价格为市场提供高端产品
    THz金镜  
    THz金镜
    THz Mirrors:Typical reflection curve is shown below. Measurements were made up to 1000 ??. However operating wavelength range is much wider.
    THz功率计Golay cell  
    THz功率计Golay cell
    Golay cell太赫兹探测器 是一款高灵敏度、室温下应用,而且具有平稳的光学响应宽光谱探测器。每一台出厂前都经过独立标定,带上了聚乙烯窗口,另在前端可以选配厂家推荐的滤波片。
    THz工具箱  
    THz工具箱
    如果您熟悉THz时域光谱仪的基本原理,并且拥有自己的飞秒激光器,那么您可以选择我们THz工具箱中的全套THz产品自己搭建THz-TDS系统。我们将提供电压信号发生器,数据采集模块,线性电机和THz天线等。并且针对系统中的硬件提供相应的控制软件,我们也可以提供您搭建系统的相关建议。
    太赫兹量子级联激光器  
    太赫兹量子级联激光器
    太赫兹是安全和非电离的,它桥接了中红外和微波波段。Easy QCL系统是一种交钥太赫兹辐射源,使用免制冷剂的斯特林循环冷却系统,无需额外校准。部分用户可互换多模QCL模块,在1.8至5THz范围内提供毫瓦级功率。
    天线阵列  
    天线阵列
    BATOP不仅提供单带隙天线,还包括整合了微透镜的高能大狭缝交叉天线阵列和整套的太赫兹光谱仪。 太赫兹光电导天线的激发波长为800nm到1550nm之间。
    IMPATT二极管THz源  
    IMPATT二极管THz源
    美国TERASENSE公司提供高功率IMPATT DIODE太赫兹源,可定制80-110GHz亚太赫兹频率单频THz发生器,窄线宽<1MHz,最高功率可达40mW;使用寿命1000小时。可选配TTL调制模块,调制上升沿时间1us。
    太赫兹宽带滤波片  
    太赫兹宽带滤波片
    THz Band Pass Filters are to transmit radiation innthe wavelength range 20- 000 ??. The filters arenfabricated from thin metal foil with holes. Configuration ofntheholesdependsontherequiredwavelength.nThe filters settle the problems of quasioptical fi
    已经是第一页 1 2